
fmicb-07-01240 August 3, 2016 Time: 13:40 # 1

ORIGINAL RESEARCH
published: 05 August 2016

doi: 10.3389/fmicb.2016.01240

Edited by:
Philippe M. Oger,

UMR CNRS 5240 Institut National
des Sciences Appliquées, France

Reviewed by:
Mohamed Jebbar,

Université de Bretagne Occidentale
Brest, France

Anaïs Cario,
Rensselaer Polytechnic Institute, USA

*Correspondence:
James F. Holden

jholden@microbio.umass.edu

†Present address:
Lucy C. Stewart,

GNS Science, Wellington 5010,
New Zealand

‡These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Extreme Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 17 May 2016
Accepted: 26 July 2016

Published: 05 August 2016

Citation:
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Thermophilic methanogens are common autotrophs at hydrothermal vents, but their
growth constraints and dependence on H2 syntrophy in situ are poorly understood.
Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected
by growth at 80◦C and 55◦C at most diffuse (7–40◦C) hydrothermal vent sites at
Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80◦C and
55◦C demonstrated that growth of thermophilic and hyperthermophilic methanogens
is primarily limited by H2 availability. Amendment of microcosms with NH4

+ generally
had no effect on CH4 production. However, annual variations in abundance and
CH4 production were observed in relation to the eruption cycle of the seamount.
Microcosm incubations of hydrothermal fluids at 80◦C and 55◦C supplemented with
tryptone and no added H2 showed CH4 production indicating the capacity in situ
for methanogenic H2 syntrophy. 16S rRNA genes were found in 80◦C microcosms
from H2-producing archaea and H2-consuming methanogens, but not for any bacteria.
In 55◦C microcosms, sequences were found from H2-producing bacteria and H2-
consuming methanogens and sulfate-reducing bacteria. A co-culture of representative
organisms showed that Thermococcus paralvinellae supported the syntrophic growth
of Methanocaldococcus bathoardescens at 82◦C and Methanothermococcus sp. strain
BW11 at 60◦C. The results demonstrate that modeling of subseafloor methanogenesis
should focus primarily on H2 availability and temperature, and that thermophilic H2

syntrophy can support methanogenesis within natural microbial assemblages and
may be an important energy source for thermophilic autotrophs in marine geothermal
environments.

Keywords: hydrogen, syntrophy, methanogenesis, hydrothermal vents, Methanococcales, Thermococcales

INTRODUCTION

Approximately 1 Gt of CH4 is formed globally per year from H2, CO2 and acetate through
methanogenesis, largely by methanogens growing in syntrophic association with anaerobic
microbes that hydrolyze and ferment biopolymers (Thauer et al., 2008). At deep-sea hydrothermal
vents, methanogens are continuously flushed from the ocean crust where H2 concentrations in
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Topçuoğlu et al. H2 Limitation and Syntrophy among Vent Thermophiles

hydrothermal fluids are high, but are scarce in low H2
environments, as measured by culture-dependent techniques
(Stewart et al., 2016), culture-independent techniques (Perner
et al., 2007; Flores et al., 2011), and both techniques in
tandem (Takai et al., 2004, 2008, 2009; Nakagawa et al., 2005,
2006; Ver Eecke et al., 2012; Lin et al., 2016). Thermophilic
methanogens are consistently found in hydrothermal
fluids at Axial Seamount, an active deep-sea volcano in the
northeastern Pacific Ocean, and nearly all belong to the genera
Methanocaldococcus, Methanothermococcus, and Methanococcus
(Huber et al., 2002; Ver Eecke et al., 2012; Meyer et al., 2013;
Fortunato and Huber, 2016). Axial Seamount erupted in 1998,
2011, and 2015 (Chadwick et al., 2012, 2013; Kelley et al., 2015),
and basalt formed by these eruptions hosted hydrothermal
niches that support methanogenesis (Huber et al., 2002; Meyer
et al., 2013).

Hyperthermophilic heterotrophs capable of H2 production,
mostly Thermococcales, are generally co-localized with
thermophilic and hyperthermophilic methanogens in low-
temperature hydrothermal vent fluids (Takai et al., 2004, 2008,
2009; Nakagawa et al., 2005, 2006; Flores et al., 2011; Ver Eecke
et al., 2012; Lin et al., 2016). Some Thermococcus species produce
H2 and possess up to five different hydrogenases (Lee et al.,
2008; Kim et al., 2010, 2013; Hensley et al., 2014, 2016) and
may serve as an alternative source of H2 for methanogens in
low H2 environments. Laboratory studies demonstrate that
the lower H2 threshold for the growth of Methanocaldococcus
species at 70–82◦C is 17–23 µM (Ver Eecke et al., 2012) and
that H2-producing hyperthermophilic heterotrophs can support
the growth of pure Methanocaldococcus strains in the absence of
added H2 (Bonch-Osmolovskaya and Stetter, 1991; Canganella
and Jones, 1994; Muralidharan et al., 1997; Johnson et al., 2006;
Ver Eecke et al., 2012). However, there are no reports of H2
syntrophy-driven methanogenesis within natural subseafloor
microbial communities at thermophilic or hyperthermophilic
temperatures. Other factors may also limit the growth of high-
temperature methanogens in situ, e.g., nitrogen availability
(Mehta and Baross, 2006; Ver Eecke et al., 2013), vitamins,
or specific trace metal requirements as observed in terrestrial
environments (Ünal et al., 2012). In some terrestrial anoxic
environments, CH4 formation is also inhibited when SO4

2−

concentrations are high (Lovley and Goodwin, 1988). Mesophilic
sulfate-reducing bacteria have lower H2 half-saturation constants
for H2 uptake and growth than mesophilic methanogens
(Kristjansson et al., 1982; Lovley et al., 1982; Robinson and
Tiedje, 1984; Karadagli and Rittmann, 2005). This enables sulfate
reducers to inhibit methanogen growth by lowering the partial
pressure of H2 to concentrations below levels that methanogens
can use for growth.

The purpose of this study was to determine, among
natural assemblages of thermophilic and hyperthermophilic
methanogens, if methanogenesis at hydrothermal vents is
limited primarily by the availability of H2; if methanogenesis is
stimulated by the addition of NH4

+; and if H2 syntrophy
occurs when natural assemblages of thermophiles and
hyperthermophiles are provided only with organic compounds
as an energy source. Twenty low-temperature hydrothermal

fluids and two nearby background seawater samples were
collected from Axial Seamount. Time series samples were
collected between and after the April 2011 and April 2015
volcanic eruptions at the site, and sampling included low-
temperature vent sites formed by cooling lava flows from
the eruptions. These field experiments and subsequent pure
culture experiments demonstrate that thermophilic and
hyperthermophilic methanogens are generally limited in situ by
the availability of H2, and that H2 syntrophy can occur but is
more likely at hyperthermophilic growth temperatures.

MATERIALS AND METHODS

Field Sampling
In August 2012, September and October 2013, August 2014, and
August 2015, 7–40◦C diffuse hydrothermal fluids were collected
from 10 vent sites at 1515–1716 m depths from Axial Seamount
on the Juan de Fuca Ridge (Figure 1). Descriptions of the
fluid sample temperatures and the sample sites are provided

FIGURE 1 | Map of Axial Seamount and the sample locations. The
hydrothermal sampling sites were along the southeastern rim of the caldera,
the western rim of the caldera (ASHES), and 10 km north of the caldera along
the North Rift Zone (NRZ). Background seawater was collected 3 km west of
the caldera at 1500 m depth and 25 m above the center of the caldera. The
outlines of the 2011 and 2015 lava flows are from Caress et al. (2012) and
W. Chadwick, personal communication (2016). The inset shows the location
of Axial Seamount in the NE Pacific Ocean.
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in Supplementary Table S1. The fluid samples were drawn into
650 ml Tedlar plastic bags with polyethylene valves within rigid
housings using the NOAA Hydrothermal Fluid and Particle
Sampler (Butterfield et al., 2004). The sampler pumped vent fluid
through a titanium nozzle and recorded the temperature of the
fluid within the intake nozzle once every second during pumping.
Samples were collected using the research submarines Jason II
and ROPOS. Background seawater was collected by shipboard
hydrocasts at 1500 m depth directly over the caldera (25 m above
the bottom) and 3 km west of the summit with 10 L Niskin bottles
(Figure 1). The hydrothermal fluid and background seawater
samples were divided for cultivation-dependent Most Probable
Number (MPN) concentration estimates of thermophiles and
hyperthermophiles (100 ml), microcosm incubations (400 ml),
and total cell counts (40 ml). All operations at sea occurred on
the research vessels Marcus G. Langseth, Thomas G. Thompson,
Falkor, and Ronald H. Brown.

Microcosm Incubations
For each sample site, 25 ml of hydrothermal fluid or background
seawater was added without exposure to air to each of 16 sealed
60 ml serum bottles that had been pre-flushed with either H2:CO2
(80%:20%) or N2:CO2 (80%:20%), depending on the headspace
composition used for incubation (Table 1). The bottles were
divided into four sets of four bottles with a pair of bottles from
each set incubated at 55◦C and 80◦C for up to a week or until
visibly turbid. Three of the four sets of microcosms (sets A–C)
were incubated each of the four study years. Set A was flushed
and filled with 200 kPa of H2:CO2 yielding an estimated aqueous
H2 concentration of 1.2 mM at their incubation temperatures
based on calculations using the geochemical prediction software
Geochemist’s Workbench. Sets B and C were flushed and filled
with 200 kPa of N2:CO2, and half of these bottles (set B) were
given 1 ml of H2:CO2 in exchange for 1 ml of N2:CO2 to
produce an estimated aqueous H2 concentration of 20 µM at
their incubation temperatures. In 2012 and 2013, the remaining
four serum bottles (set D) were amended with 4.7 mM NH4Cl
(2012 only) or 47 µM NH4Cl (2013 only) and flushed and
filled with 200 kPa of H2:CO2 to test for growth stimulation
by ammonium. The NH4Cl concentration was based on that
added to our defined methanogen growth medium (see below).
In 2014 and 2015, the remaining four serum bottles (set E)

TABLE 1 | Description of microcosms.

Group Years Description

Set A (high H2) All 200 kPa H2:CO2 (80%:20%)

Set B (low H2) All 200 kPa N2:CO2 (80%:20%), 1 ml of
headspace replaced with 1 ml of H2:CO2

Set C (no H2) All 200 kPa N2:CO2

Set D (high
H2 + NH4

+)
2012–2013 200 kPa H2:CO2 plus 4.7 mM NH4Cl

(2012) or 47 µM NH4Cl (2013)

Set E (no H2,
tryptone added)

2014–2015 200 kPa N2:CO2 plus 0.5% tryptone and
0.01% yeast extract

Each 60 ml serum bottle contained 25 ml of low-temperature diffuse hydrothermal
fluid that was incubated in pairs at 55◦C and 80◦C.

were amended with 0.5% (wt vol−1) tryptone plus 0.01% (wt
vol−1) yeast extract and flushed and filled with 200 kPa of
N2:CO2 to test for H2 syntrophy. All samples were reduced
with 0.025% (wt vol−1) each of cysteine-HCl and Na2S r9H2O.
Growth of methanogens was determined by analyzing for CH4
in the headspace using gas chromatography once the cells in
the bottle had reached stationary growth phase. In 2015, an
aliquot of the 80◦C and 55◦C tryptone/no H2 samples (set E)
that showed CH4 production were filtered onto 0.2-µm pore
size nucleopore filters prestained with Irgalan black (Sterlitech,
Kent, WA, USA), stained with acridine orange (Francisco et al.,
1973), and examined using epifluorescence microscopy. In 2015,
the 80◦C and 55◦C tryptone/no H2 samples from the Marker
113 vent site were also separately filtered through Sterivex GP
0.22 µm sterile filter units (Millipore, Billerica, MA, USA) and
frozen at −80◦C until analyzed. In 2015, 10 ml of hydrothermal
fluid was added to sealed Balch tubes without exposure to air,
amended separately with 0.1% (wt vol−1) sodium formate and
0.5% (wt vol−1) sodium acetate, flushed and filled with 200 kPa
N2:CO2, and incubated in duplicate at 80◦C and 55◦C for
up to seven days to determine if these substrates can support
methanogenesis at high temperatures.

Total cell counts in the original hydrothermal fluids were
done by preserving in duplicate 18 ml of hydrothermal fluid with
1.8 ml of 37% formaldehyde. Samples were stored at 4◦C for less
than a month prior to counting by epifluorescence microscopy as
described above.

DNA Extraction and 16S rRNA Amplicon
Sequencing
In this study and elsewhere (Butterfield et al., 2004; Mehta and
Baross, 2006; Ver Eecke et al., 2012, 2013; Fortunato and Huber,
2016), Marker 113 vent showed the highest concentrations of
methanogens and methanogenesis at Axial Seamount. Therefore,
DNA from each 2015 Marker 113 microcosm that had been
amended with tryptone (i.e., set E) and concentrated with
a Sterivex filter was extracted and eluted using the MoBio
PowerWater DNA extraction kit (MoBio, Carlsbad, CA, USA) as
described by the manufacturer to determine which methanogens
and other microorganisms were present following the microcosm
incubations. The DNA was quantified using a Nanodrop 2000
spectrophotometer (Thermo Scientific, Wilmington, DE, USA)
and stored at −20◦C. The v4v5 regions of the 16S rRNA gene
were amplified separately for bacteria and archaea and prepared
for Illumina sequencing from the DNA extractions. Bacterial
amplification was carried out as previously described (Huse et al.,
2014). The archaeal v4v5 16S rRNA gene was targeted by a
combination of five forward primer variants (517F; GCCTAA
AGCATCCGTAGC, GCCTAAARCGTYCGTAGC, GTCTAAA
GGGTCYGTAGC, GCTTAAAGNGTYCGTAGC, GTCTAAAR
CGYYCGTAGC) and a single reverse primer (958R; CCGGC
GTTGANTCCAATT). Amplification primers were designed
based on information from probeBase (Alm et al., 1996; Loy
et al., 2003; Huber et al., 2007) and the SILVA database (Ludwig
et al., 2004). 16S rRNA amplicon sequencing was performed
using an Illumina MiSeq Benchtop sequencer (Illumina, San
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Diego, CA, USA) at the Marine Biological Laboratory in Woods
Hole, MA as described on the Visualization and Analysis of
Microbial Population Structures (VAMPSs) website1. Paired-
end sequences were assessed for quality and merged using
the code base previously described (Eren et al., 2013). The
sequences were binned into operational taxonomic units (OTUs)
using subsampled open reference OTU picking method at
97% sequence identity based on the Greengenes database and
taxonomies assigned using the RDP Classifier (Wang et al.,
2007) with minimum confidence score 0.8 in QIIME (Caporaso
et al., 2010). Sequences are available at the NCBI Sequence Read
Archive under accession number SRP071807.

Media Used
The defined methanogen growth medium for laboratory
experimentation and MPN analyses was a modification of DSM
282 medium (Jones et al., 1983; Ver Eecke et al., 2012), which
contained (per liter in ddH2O): 0.14 g of K2HPO4, 0.14 g of
CaCl2 r7H2O, 0.25 g of NH4Cl, 3.4 g of MgSO4 r7H2O, 5.1 g
of MgCl2 r6H2O, 0.34 g of KCl, 0.05 mg of NiCl2 r6H2O, 0.05
mg of Na2SeO3 r5H2O, 30 g of NaCl, 1 g of NaHCO3, 1 g of
NaS2O3, 0.24 g of Na2MoO4 r2H2O, 10 ml of Wolfe’s minerals,
10 ml of Wolfe’s vitamins, and 0.25 mg of resazurin. For the
2012 MPNs, 0.24 g of Na2MoO4 r2H2O was also added to
suppress sulfate reduction but was omitted in subsequent years.
The medium was pH balanced to 6.0, reduced with 0.025%
each of cysteine-HCl and Na2S r9H2O, and pressurized with
200 kPa of H2:CO2 headspace. The autotrophic sulfur-reducer
medium was the same as the methanogen medium except that
10 g l−1 of elemental sulfur were added and the medium was
reduced with 3.2 mM dithiothreitol (DTT). The heterotroph
medium for MPN estimates was based on the Adams medium
(Adams et al., 2001) and contained 0.5% tryptone plus 0.01%
yeast extract. It was pH balanced at 6.8, reduced with 0.025%
each of cysteine-HCl and Na2S r9H2O, and pressurized with
100 kPa of N2:CO2 headspace. The heterotroph-methanogen
co-culture medium was the modified DSM 282 medium with
0.1 ml of 10 mM Na2WO4 r2H2O, 1 ml of 0.2% (NH4)2Fe(SO4)2-
(NH4)2Ni(SO4)2, and 0.5% tryptone plus 0.01% yeast extract
added with 200 kPa of N2:CO2 headspace. The medium was pH
balanced to 6.8.

Most Probable Number (MPN) Cell
Estimates
Three-tube MPN analyses were used by adding 3.3, 0.33, and
0.03 ml of the hydrothermal fluid samples in triplicate to
the methanogen, autotrophic sulfur reducer, and heterotroph
media as previously described (Ver Eecke et al., 2009). After
inoculation, the tubes were incubated at 80◦C and 55◦C for
up to 7 days. Growth in the tubes was confirmed using phase-
contrast light microscopy. Growth of methanogens and H2-
producing heterotrophs was verified by analyzing all of the
tubes for CH4 and H2, respectively, in the headspace using
gas chromatography. Total and H2-producing heterotroph cell
concentration estimates were scored and reported separately

1https://vamps.mbl.edu/resources/primers.php

based on tubes that had cells versus those with H2. In order
to estimate the concentration of non-methanogenic autotrophs
in the autotrophic sulfur medium, the estimated number of
methanogens in the autotrophic sulfur medium MPN tubes was
subtracted from the estimated concentration of total cells.

Pure and Co-culture Growth Conditions
Methanocaldococcus bathoardescens JH146 (DSM 27223; Ver
Eecke et al., 2013; Stewart et al., 2015), Methanothermococcus sp.
strain BW11 (DSM 100453; Stewart et al., 2016), and Thermo-
coccus paralvinellae ES1 (DSM 27261; Pledger and Baross, 1989;
Hensley et al., 2014, 2016) were used for pure and co-culture
experiments from our hyperthermophile culture collection.
Methanocaldococcus jannaschii JAL-1 (DSM 2661; Jones et al.,
1983) and Methanothermococcus thermolithotrophicum (DSM
2095; Huber et al., 1982) were purchased from the Deutsche
Sammlung von Mikrooganismen und Zellkulturen GmbH
(DSMZ, Braunschweig, Germany).

Methanocaldococcus jannaschii and M. bathoardescens were
grown at 80◦C and M. thermolithotrophicum and Methano-
thermococcus sp. strain BW11 were grown at 55◦C in 25 ml
of modified DSM 282 methanogen medium in 60 ml serum
bottles with 200 kPa of H2:CO2 for up to 5 days to compare
their maximum CH4 production amounts with those of the field
microcosms. M. jannaschii and M. thermolithotrophicum were
grown at 82◦C and 65◦C, respectively, in the methanogen
medium described above minus cysteine and all other
sources of nitrogen with varying concentrations of NH4Cl
to determine the effect of nitrogen availability. M. jannaschii and
M. bathoardescens were also grown at 82◦C in Balch tubes in
modified DSM 282 medium without added vitamins following
five transfers on vitamin-free medium to determine the effect of
vitamins on their growth.

For each growth kinetic experiment, 18 Balch tubes containing
growth medium were inoculated simultaneously with a
logarithmic growth phase culture that had been transferred
three times on that medium and incubated in a forced-air
incubator. Three tubes were permanently removed from the
incubator at various time points. The cell concentration in
each tube was determined using a Petroff–Hausser counting
chamber and phase contrast light microscopy. The growth rate
(µ) of the culture was determined by fitting an exponential
curve to the growth data. The total amount of CH4 in each tube
that had been cooled to room temperature was determined by
measuring the volume of gas in each tube and the amount of
CH4 in 100 µl of headspace using gas chromatography. The
CH4 production yield (Yp/x) was determined from the slope of
the amount of CH4 per tube plotted against the total number of
cells per tube. The rate of CH4 production per cell is calculated
from Yp/x × µ/0.693 as previously described (Ver Eecke et al.,
2013). The 95% confidence intervals for growth and CH4
production rates were calculated as previously described (Zar,
1996).

Thermococcus paralvinellae was grown separately on the co-
culture base medium described above with either 0.5% tryptone
plus 0.01% yeast extract; 0.5% maltose plus 0.01% yeast
extract; or 0.5% each of tryptone and maltose plus 0.01%
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yeast extract media, each with 200 kPa of N2:CO2 headspace,
at 82◦C and 60◦C to determine how temperature affects its
rate of H2 production on various substrates. The rate of H2
production was measured as described above for the rate
of CH4 production by the methanogens. For the co-culture
experiments, T. paralvinellae was grown alone at 82◦C and
60◦C, in co-culture with M. bathoardescens at 82◦C, and in co-
culture with Methanothermococcus sp. strain BW11 at 60◦C in
160 ml serum bottles containing 50 ml of modified DSM 282
medium supplemented with 0.5% each of maltose and tryptone
plus 0.01% yeast extract with 200 kPa of N2:CO2 headspace.
The heterotrophs and methanogens were combined during
inoculation in a 10:1 cell ratio. The co-culture was established
immediately and did not require prior co-culture transfers. At
various time points during growth, the amount of H2 and
CH4 was measured from triplicate incubation bottles using gas
chromatography.

RESULTS

MPN Cell Estimates in Hydrothermal
Fluids
In 2012, the concentrations of all thermophiles and
hyperthermophiles in all samples were very low compared to the
concentrations in subsequent years (Table 2 and Supplementary
Table S2). In 2013, methanogens that grew at 80◦C were detected
in low-temperature hydrothermal fluids at Marker 113, Marker
33, ASHES, Boca, and Skadi. They were not detected in vent
fluids from Coquille, Marker N3 or the International District
(Table 2 and Supplementary Table S2). Methanogens that grew

at 55◦C were found at lower concentrations at Marker 113,
Marker 33, ASHES, Boca, Skadi, Marker N3, and Coquille,
but were not detected at the International District (Table 2
and Supplementary Table S2). Heterotrophs that grew at 80◦C
and 55◦C were present in relatively high concentrations at
each vent site in 2013 (Table 2 and Supplementary Table S2).
The concentrations of heterotrophs that produced H2 were
lower at 330–7,200 cells L−1 at 80◦C, and only Marker 113
and Boca showed any H2 producing heterotrophs at 55◦C,
which were at low concentrations (120–270 cells L−1). The
heterotrophs that grew at 80◦C were all coccoids, while those
that grew at 55◦C were predominantly rods. Non-methanogenic
autotrophs that grew at 80◦C and 55◦C were also present at
most of the vent sites in 2013 (Table 2 and Supplementary
Table S2).

The Marker 113, Marker 33, and ASHES vent sites were
selected for time series measurements in 2014 and 2015 (Table 2).
During those years, methanogens that grew at 80◦C were found
at each site. From 2012 to 2015, methanogens that grew at
55◦C increased in abundance from not detectable to 33,000 cells
L−1 at Marker 113, were not detectable at Marker 33 in 2015,
and were consistently present at relatively low concentrations
at ASHES. Heterotrophs that grew at 80◦C and 55◦C were
often present in high concentrations, but in 2015 decreased
significantly in concentration at 80◦C at Marker 113 and at
55◦C at Marker 113 and Marker 33. The concentrations of
H2-producing heterotrophs that grew at 80◦C was relatively
high at all three vents in 2014 but decreased significantly
in 2015. Similarly, H2-producing heterotrophs that grew at
55◦C were higher in concentration at the three vents in 2014
than in 2015. As in 2013, the heterotrophs that grew at

TABLE 2 | Most-probable number (MPN, L−1) estimates of heterotrophs, H2-producing heterotrophs, methanogens, and non-methanogenic
hydrogenotrophs that grow at 55◦C and 80◦C.

80◦C 55◦C

2012 2013 2014 2015 2012 2013 2014 2015

Marker 113

Heterotrophs 2,790 >33,000 >33,000 1,140 NDa >33,000 >33,000 1,140

H2-prod. heterotrophs 220 330 33,000 ND ND 120 2,250 276

Methanogens 120 1,050 6,300 1,140 ND 330 13,800 33,000

Other autotrophs 102 5,220 ND ND 270 5,610 1,350 ND

Initial total cells (×108, L−1)b 3.4 5.4 8.5 15.0

Marker 33

Heterotrophs – >33,000 >33,000 33,000 – >33,000 >33,000 1,290

H2-prod. heterotrophs – 7,200 4,500 ND – ND 840 108

Methanogens – 13,800 13,800 1,290 – 330 2,790 ND

Other autotrophs – ND ND 33,000 – 32,310 4,224 13,800

Initial total cells (×108, L−1) – 2.8 9.6 8.1

Anemone (ASHES)

Heterotrophs 7,200 13,800 >33,000 >33,000 690 7,200 >33,000 13,800

H2-prod. heterotrophs 2,790 1,290 1,290 120 ND ND 13,800 450

Methanogens ND 276 1,290 1,290 ND 690 120 450

Other autotrophs 276 1,170 2,340 13,680 270 2,670 4,500 4,380

Initial total cells (×108, L−1) 0.8 4.1 9.4 10.0

aND, not detected. bTotal cell concentration is for the hydrothermal fluid sample prior to incubation.
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80◦C were all coccoids, while those that grew at 55◦C were
predominantly rods. From 2013 to 2015, non-methanogenic
autotrophs decreased in concentration at 80◦C and 55◦C at
Marker 113 until they were no longer detectable, increased in
concentration at 80◦C at Marker 33, and remained relatively
constant at ASHES. At the North Rift Zone (NRZ) eruption
site in 2015, there were 2,790 methanogens L−1 that grew
at 80◦C and 33,000 methanogens L−1 that grew at 55◦C
(Supplementary Table S2). No non-methanogenic autotrophs
grew at either 80◦C or 55◦C from NRZ fluids. No methanogens,
heterotrophs or non-methanogenic autotrophs grew at either
80◦C or 55◦C from background seawater collected at 1,500 m
depth 3 km away from the seamount summit or 25 m above
the summit caldera, with the exception of 90 heterotrophs
L−1 that grew at 55◦C from over the caldera (Supplementary
Table S2).

Growth in Microcosms on H2, CO2, and
NH4

+

In 2012, consistent with the MPN concentration estimates, no
CH4 was detected in any of the microcosms at either 80◦ or
55◦C, except for one high H2 microcosm and one low H2
microcosm incubated at 80◦C from Marker 113. In 2013, CH4
production occurred in microcosms amended with H2, CO2 and
NH4Cl at 80◦C in hydrothermal fluids from Marker 113, ASHES,
Marker 33, and Skadi with up to 31.6 mmol CH4 produced
L−1 of vent fluid (Figure 2A). Methanogenesis also occurred
in microcosms at 55◦C in fluids from the same sites plus Boca
vent with up to 31.0 mmol CH4 produced L−1 (Figure 2B). The
amount of CH4 produced when only 1 ml of H2:CO2 (20 µM
H2) was added to each bottle was 1–3% the amount of CH4
produced when 200 kPa of H2:CO2 were added (Figure 2). The
amount of CH4 produced when the microcosms were amended
with 47 µM NH4Cl in addition to 200 kPa of H2:CO2 was
generally the same as the amount of CH4 produced when only
200 kPa of H2:CO2 were added, with the exceptions of the
microcosms from ASHES at both incubation temperatures and
from Marker 33 incubated at 55◦C (Figure 2). Consistent with
the MPNs, there was no methanogenesis at 80◦C and 55◦C
in hydrothermal fluids from Marker N3 and the International
District, nor in either background seawater sample. There was
no CH4 in any 80◦C or 55◦C microcosms amended only with
N2:CO2. For comparison, the total amounts of CH4 produced by
M. bathoardescens and M. jannaschii grown to stationary growth
phase at 82◦C in modified DSM 282 methanogen medium were
the same as the 80◦C microcosms (Figure 2A). Similarly, the
total amounts of CH4 produced by M. thermolithotrophicum and
Methanothermococcus sp. strain BW11 at 55◦C were the same as
the 55◦C microcosms (Figure 2B).

Methanothermococcus jannaschii grown at 82◦C and
M. thermolithotrophum grown at 65◦C at varying NH4Cl
concentrations in otherwise nitrogen-free medium did not
show any change in cell specific CH4 production rate in
medium with 47 µM to 9.4 mM NH4Cl added (Figure 3 and
Supplementary Table S3). Furthermore, the growth rates of
M. jannaschii and M. bathoardescens grown at 82◦C without

FIGURE 2 | Average total CH4 production in 2013 microcosms. The
microcosms were incubated at 80◦C (A) and 55◦C (B) and amended with
200 kPa of H2:CO2 (red); 200 kPa of H2:CO2 plus 47 µM NH4Cl (blue); and
2 kPa of H2 and 198 kPa of N2:CO2 (black). The gray columns show the total
CH4 production for the four pure cultures in modified DSM 282 medium for
comparison. The sample bars represent the range of the duplicate
incubations.

vitamins were 1.19 h−1
± 0.32 h−1 (±95% confidence interval)

and 2.74 h−1
± 1.01 h−1, respectively, and were not significantly

different than the rates for each organism with added vitamins.

FIGURE 3 | Cell-specific rate of CH4 production at varying NH4Cl
concentrations. Methanocaldococcus jannaschii ( ) and
M. bathoardescens (#) were grown at 82◦C, and M. thermolithotrophicum (N)
was grown at 65◦C. The data for M. bathoardescens are from Ver Eecke et al.
(2013) and are provided for comparison. The error bars represent the 95%
confidence intervals.
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H2 Syntrophy in Microcosms
In 2014, methanogenesis occurred in microcosms amended with
200 kPa of H2:CO2 or separately with tryptone plus N2:CO2
at 80◦C and 55◦C in hydrothermal fluids from Marker 113,
ASHES, and Marker 33 with up to 9.5 mmol CH4 produced
L−1 (Supplementary Figure S1). The amount of CH4 produced
was lower and less consistent than observed in 2013 and
2015. In contrast, in 2015 methanogenesis occurred at 80◦C
in hydrothermal fluids from Marker 113, ASHES, Marker
33, and the NRZ eruption site with up to 49.3 mmol CH4
produced L−1 (Figure 4A). Methanogenesis occurred at 55◦C
in hydrothermal fluids from Marker 113, ASHES, and the
NRZ with up to 38.2 mmol CH4 produced L−1 (Figure 4B).
Similar to MPN observations, there was no methanogenesis at
55◦C in two separate sets of microcosms containing fluid from
Marker 33 that were amended only with 200 kPa of H2:CO2
(Figure 4B). As seen in 2013, the amount of CH4 produced
in 2015 when only 1 ml of H2:CO2 was added to each bottle
was 1–3% the amount of CH4 produced when 200 kPa of
H2:CO2 were added (Figure 4). The amount of CH4 produced
when microcosms were amended with tryptone plus N2:CO2

FIGURE 4 | Average total CH4 production in 2015 microcosms. The
microcosms were incubated at 80◦C (A) and 55◦C (B) and amended with
200 kPa of H2:CO2 (red); 200 kPa of N2:CO2, 0.5% tryptone and 0.01%
yeast extract (green); and 2 kPa of H2 and 198 kPa of N2:CO2 (black). The
sample bars represent the range of the duplicate incubations. The asterisks
show where there was growth in only one microcosm bottle.

was 4.7–11.4 mmol L−1 at 80◦C and was less (1.1–2.0 mmol
L−1) at 55◦C (Figure 4). Microscopic observations of the 2015
tryptone plus N2:CO2 microcosms following incubation show
that the 80◦C microcosms contain almost all coccoid-shaped cells
(Supplementary Figure S2A) while the 55◦C microcosms contain
mostly rod-shaped cells with some coccoids (Supplementary
Figure S2B). There was no CH4 in any 80◦C or 55◦C microcosms
amended only with N2:CO2 or in 80◦C and 55◦C microcosms
amended with tryptone plus N2:CO2 containing background
seawater collected 25 m above the caldera. There also was
no CH4 in any 80◦C and 55◦C microcosms amended with
either acetate or formate with 200 kPa of N2:CO2 in the
headspace.

Phylogenetic analysis showed that DNA from microcosms
incubated at 80◦C only amplified with archaeal primers.
Microcosms incubated at 55◦C amplified with bacterial primers
but only one of the replicates amplified with archaeal primers.
Sequencing depths ranged from 78,143 to 163,507 sequences,
with a mean of 114,736 reads per sample. Rarefraction
analysis showed that sequencing efforts were sufficient to
represent the diversity of the samples examined. Archaeal
sequence reads were binned into 161 OTUs based on 97%
sequence identity after singletons were removed. Archaeal
sequences in the 80◦C microcosms belonged to genera
Thermococcus (46–73% of sequences), Methanocaldococcus
(17–37% of sequences), and Archaeoglobus (9–14% of sequences)
with some sequences that belong to Methanothermococcus,
Palaeococcus, and Nitrosopomilus (Figure 5A). Archaeal
sequences observed in 55◦C microcosm were dominated
by the genera Methanothermococcus (96% of sequences)
and Methanocaldococcus (3% of sequences) (Figure 5A).
Bacterial sequence reads were binned into 188 OTUs based

FIGURE 5 | Phylogenetic diversity of Archaea and Bacteria in the 80◦C
and 55◦C microcosms. Taxonomic breakdown and relative abundance at
the genus level for archaeal (A) and bacterial (B) 97% 16S rRNA gene OTUs
from microcosms following incubation at 80◦C and 55◦C using diffuse
hydrothermal fluids collected from the Marker 113 vent site.
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on 97% sequence identity after singletons were removed. The
sequences were dominated by the genera Tepidibacter (34–
42% of sequences), Caloranaerobacter (26–36% of sequences),
Caminicella (17–23% of sequences), and Desulfotomaculum
(6–10% of sequences) (Figure 5B), which all belong to the order
Clostridiales (98% of sequences in both replicates).

The cell specific rates of H2 production by T. paralvinellae
grown on maltose, tryptone, and combination of maltose and
tryptone were not significantly different from each other at either
temperature examined (Figure 6A). The rates decreased from
3.4 to 6.2 fmol H2 cell−1 h−1 at 82◦C to 1.2–1.9 fmol H2
cell−1 h−1 at 60◦C. T. paralvinellae grown alone at 82◦C and
60◦C produced up to 6.7 mmol H2 L−1 at specific production
rates of 0.22 h−1 and 0.04 h−1, respectively (Figure 6B). When
grown in co-culture with M. bathoardescens at 82◦C and with
Methanothermococcus strain BW11 at 60◦C, the amount of H2
produced remained below 0.3 mmol L−1 and 0.1 mmol L−1,
respectively. The amount of CH4 produced in co-culture at 82◦C
and 60◦C was 3.9 mmol L−1 and 2.8 mmol L−1 and the specific
rates of CH4 production were 0.16 h−1 and 0.06 h−1, respectively
(Figure 6B).

DISCUSSION

This study demonstrated that naturally occurring methanogens
at Axial Seamount are primarily limited by H2 availability and not
by the availability of other compounds such as nitrogen sources,
trace metals, or vitamins. It also showed that methane production
can occur among natural assemblages of methanogens by H2
syntrophy but appears to be more prevalent at hyperthermophilic
temperatures rather than thermophilic temperatures due to the
growth of competitors at the lower temperatures.

The eruption cycle at Axial Seamount provided the
opportunity to examine the impact of eruption events on
methanogenic and heterotrophic microbial communities in
hydrothermal fluids there. Previous work at Axial Seamount
after eruptive events showed that microbial diversity appears
to increase in the year following the eruption, with some
vents, including snowblowers, quickly dying out, while other
pre-existing vents continue to vent post-eruption (Huber et al.,
2002, 2003, 2006a; Ver Eecke et al., 2012; Meyer et al., 2013). In
2012, 16 months after the 2011 eruption, the concentrations of
thermophiles, hyperthermophiles and total cells at Marker 113,
ASHES, and Boca were lower than at any other time during the
sampling time series suggesting there is a period of microbial
quiescence between eruptions that is widespread throughout
the caldera. In 2014, as the magma chamber inflated leading up
to the 2015 eruption (Kelley et al., 2015), the concentrations of
cultivable hyperthermophilic and thermophilic methanogens
and heterotrophs reached their highest points at Marker 113
and Marker 33 on the eastern flank of the caldera, close to
the eruptive fissures and the underlying magma chamber, but
remained relatively constant at ASHES on the western flank
of the caldera. Methanogen and heterotroph concentrations
decreased at Marker 113 and Marker 33 in 2015 4 months
after the eruption. This suggests that the eastern flank of Axial

Seamount may be heading toward another period of microbial
quiescence within the anoxic subseafloor. The exception was at
Marker 113 where methanogens that grew at 55◦C increased
in concentration through 2015 while other autotrophs that
grew at 55◦C decreased in concentration until they were
undetectable. In contrast, CH4 production in microcosms
was lower in 2014 than in 2013 and 2015 suggesting that the
elevated concentrations of cultivable methanogens may have
partially depleted some growth factor in the system other than
H2 that year which led to poorer growth in the microcosms.
As previously observed at Boca following the 2011 eruption
(Meyer et al., 2013), methanogens were relatively abundant in
hydrothermal fluids emanating from new basalt flows on the
North Rift Zone (NRZ) caused by the 2015 eruption. No other
thermophilic or hyperthermophilic hydrogenotrophs were found
at the site.

Low-temperature hydrothermal fluids at Axial Seamount
(e.g., <40◦C) are typically depleted or nearly depleted in
H2 (e.g., <3 µmol kg−1) due to microbial H2 consumption
or low-H2 source fluids (Ver Eecke et al., 2012). In these
environments, H2 syntrophy may serve as an alternative source
of H2 to help sustain methanogens and other hydrogenotrophs.
Mesophilic sulfide-oxidizing bacteria, abundant macrofauna, and
seawater ingress into hotter hydrothermal environments may
provide the labile organic compounds necessary to support
H2-producing heterotrophs. The predominant heterotrophs at
hyperthermophilic temperatures in low-temperature fluids at
Axial Seamount are Thermococcus species (Huber et al., 2002,
2006a). All Thermococcus species possess at least one hydrogenase
(Schut et al., 2012), and some have as many as seven hydrogenases
(Lee et al., 2008; Jung et al., 2014). In this study, T. paralvinellae,
which possesses the genes for seven hydrogenases (Jung et al.,
2014), produced H2 from protein and carbohydrate substrates
at equal rates that both increased with increasing temperature.
Microcosm incubations at both 80◦C and 55◦C demonstrated
that it is H2 and not formate or acetate that is used by
the methanogens at high temperatures. This is likely due to
the lower energy yield for methanogenesis using formate and
acetate as carbon and energy sources (Deppenmeier, 2002).
Thermococcus is widely representative of H2 producers in many
diverse subseafloor ecosystems. They were the only archaeal
16S rRNA gene sequences found 99 and 194 meters below the
seafloor (mbsf) in Nankai Trough sediments (Kormas et al.,
2003). They dominated the archaeal 16S rRNA gene diversity of
a sediment horizon collected 634 mbsf in the Canterbury Basin
(Ciobanu et al., 2014) and in 80–90◦C water-flooded oil reservoirs
in the Sinopec Shengli oil field (Junzhang et al., 2014). They
are commonly found in ridge flanks basement outcrops (Huber
et al., 2006b; Ehrhardt et al., 2007) and petroleum reservoirs
(Stetter et al., 1993; L’Haridon et al., 1995; Miroshnichenko
et al., 2001; Dahle et al., 2008). Therefore, Thermococcus
may have the potential to degrade local organic compounds
and provide H2 to collocated hydrogenotrophic microbes in
non-hydrothermal vent subseafloor anoxic environments as
well.

The taxonomic analysis of microcosm incubations
demonstrates a transition from hyperthermophilic archaeal
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FIGURE 6 | H2 production by Thermococcus paralvinellae and CH4 production by M. bathoardescens and Methanothermococcus sp. BW11 grown
alone and in co-culture. (A) Cell-specific H2 production rate of T. paralvinellae at 82◦C and 60◦C when grown on 0.5% maltose and 0.01% yeast extract (light
gray), 0.5% tryptone and 0.01% yeast extract (gray), and 0.05% each of maltose and tryptone and 0.01% yeast extract (black). (B) H2 (circles) and CH4 (triangles)
produced when T. paralvinellae was grown alone (open circles) and in co-culture (filled symbols) with M. bathoardescens at 82◦C (red) and with
Methanothermococcus sp. BW11 at 60◦C (black).

H2 syntrophy to thermophilic bacterial H2 syntrophy with
decreasing incubation temperature. In 55◦C microcosms, the
amount of CH4 produced through syntrophy decreased relative
to the 80◦C microcosms, suggesting that H2 syntrophy-driven
methanogenesis may be more pronounced at hyperthermophilic
temperatures. The 80◦C microcosms produced the most CH4
and only archaeal DNA was amplified from these incubations,
including the H2-producing heterotroph Thermococcus and
the H2-consuming methanogens Methanocaldococcus and
Methanothermococcus species. These were the predominant
organisms found in previous Marker 113 fluids incubated at
80◦C with H2 and bicarbonate for stable-isotope probing analysis
(Fortunato and Huber, 2016) and other hyperthermophile
culture- and molecular-based analyses (Ver Eecke et al., 2012).
In contrast, the 55◦C microcosms produced significantly less
CH4, bacterial DNA was amplified in both samples, and archaeal
DNA was amplified in only one sample. The predominant
bacteria found in these samples were most closely related to the
genera Tepidibacter, Caloranaerobacter, and Caminicella. Each
of these genera is a thermophilic member of the Clostridia and
has representatives that were isolated from hydrothermal vents
that ferment peptides and carbohydrates and produce H2, CO2,
carboxylic acids, alcohols, and alanine (Wery et al., 2001; Alain
et al., 2002; Slobodkin et al., 2003; Jiang et al., 2014). Among
hydrogenotrophs, Methanothermococcus was the predominant
archaeon sequence found in one 55◦C microcosm, and sequences
most closely related to Desulfotomaculum were also found
among the bacteria. Desulfotomaculum thermosubterraneum
is a thermophilic sulfur reducer that can consume H2, CO2,
carboxylic acids, alcohols, and alanine (Kaksonen et al.,
2006). These results indicate the capacity of hydrothermal

vent microbial communities to perform various forms of H2
syntrophy depending on growth temperature.

In order to quantify how H2 limitation and syntrophy impact
CH4 production, primary production, and total biomass within
subseafloor environments at hydrothermal vents and elsewhere,
it will be necessary to develop models of growth and cell-
cell interactions that can be applied to these environments.
All models make certain a priori assumptions, and this
study demonstrated that in most circumstances, the growth
of thermophilic and hyperthermophilic methanogens in situ
is primarily limited by the availability of H2 and heat. The
ability of some Methanocaldococcus and Methanothermococcus
species to fix N2 suggests that they are adapted to low-
nitrogen environments (Belay et al., 1984; Mehta and Baross,
2006; Nishizawa et al., 2014). Depleted NO3

− concentrations in
diffuse vent fluids at Axial (Butterfield et al., 2004; Bourbonnais
et al., 2012) suggest that NO3

− may be limited in the
subseafloor, although metatranscriptomic analysis of Marker 113
hydrothermal fluids shows that the genes for denitrification
are expressed (Fortunato and Huber, 2016). However, 6NH3
in high-temperature source fluids at Axial is variable and
reaches 16 µmol kg−1 (approximately 1/3 of the ambient deep
seawater NO3

−), providing a modest nitrogen source for primary
producers. In most of the microcosm incubations in this study,
the addition of 47 µM NH4Cl did not enhance the production
of CH4, the amount of CH4 produced by natural methanogen
assemblages in hydrothermal fluid was the same as those by
pure cultures in nutrient-replete medium, and the omission
of vitamins to pure cultures had no effect on their growth.
Therefore, natural assemblages of thermophilic methanogens
do not appear to be limited by nitrogen or trace nutrient
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requirements in most cases. Methane production was low in
the 2014 microcosms relative to 2013 and 2015, despite the fact
that the number of cultivable methanogens was relatively high,
suggesting that there are periods where methanogens might be at
least partially limited in their growth by factors other than H2 and
heat.

CONCLUSION

The microcosm results validate the modeling assumption
made in the lab that the artificial conditions generated are
generally representative of the growth of natural assemblages
of methanogens in a mixture of hydrothermal fluid and
seawater. They also define the constraints on methanogenesis
at hydrothermal vents and tie together metagenomics and
metatranscriptomic data with ecosystem functioning. These will
help reveal the physiological state of methanogens in situ and
assist in the effort to model the rates of methane formation in
hydrothermal systems on varying substrates.
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